时间:2022-05-26人气:作者:未知
根号x^2-1的不定积分是(1/2【arcsinx+x√(1-x^2)】+C,x=sinθ,dx=cosθdθ。=∫(1+cos2θ)/2 dθ=θ/2+(sin2θ)/4+C。=(arcsinx)/2+(sinθcosθ)/2+C,=(arcsinx)/2+(x√(1-x^2))/2+C。=(1/2)【arcsinx+x√(1-x^2)】+C。
不定积分求法:
1、积分公式法。直接利用积分公式求出不定积分。
2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。
(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式∫udv=uv-∫vdu。
不定积分公式
1、∫kdx=kx+c
2、∫x^udx=(x^(u+1))/(u+1)+c
3、∫1/xdx=ln|x|+c
4、∫a^xdx=(a^x)/lna+c
5、∫e^xdx=e^x+c
6、∫sinxdx=-cosx+c
7、∫cosxdx=sinx+c
8、∫1/(cosx)^2dx=tanx+c
拓展资料
这个根号下的不定积分,符合模型∫√a²-x²dx,本题中就是a=1的情况。根据sin²x+cos²x=1,用sinθ替换x,然后被积函数,被积变量都要改变。
要做出如图所示的三角形,更容易加深理解。最后要把中间变量θ变回x
不定积分的意义
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间【a,b】上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
1、高度的催化效率。酶具有极高的催化效率。要比一般催化剂高105~1013倍,这就是为什么生物体内酶含量少而又可催化大量的底物。2、高度的专一性。一种酶只作用于一类化合物或一定的化学键,以促进一定的化学变化,并生成一定的
(0)人喜欢2023-03-111、除金星以外,火星是离地球最近的行星。火星的质量比地球质量小1/9,半径仅为地球半径的1/2左右。2、火星是唯一能在地球处用望远镜看得很清楚的类地行星。通过望远镜,火星看起来像个橙色的球。随着季节变化,南北两极会出现白
(1)人喜欢2023-03-111、太阳是距离地球最近的恒星,是太阳系的中心天体。2、太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。3、太阳的特点:“大“。太阳直径大约是13920
(1)人喜欢2023-03-111、方向性:它是生活中、职业中各种事态连续发展演进的一个方向。是指引我们自己内心中去往未来的一个路径。这个方向性基于个体的自我认知、兴趣、特质、能力等方面共同决定的。2、时间性:生涯其实纵贯了人的一生,是一个连续不断的过
(1)人喜欢2023-03-111、高度的催化效率。酶具有极高的催化效率。要比一般催化剂高105~1013倍,这就是为什么生物体内酶含量少而又可催化大量的底物。2、高度的专一性。一种酶只作用于一类化合物或一定的化学键,以促进一定的化学变化,并生成一定的
(0)人喜欢2023-03-111、除金星以外,火星是离地球最近的行星。火星的质量比地球质量小1/9,半径仅为地球半径的1/2左右。2、火星是唯一能在地球处用望远镜看得很清楚的类地行星。通过望远镜,火星看起来像个橙色的球。随着季节变化,南北两极会出现白
(1)人喜欢2023-03-111、太阳是距离地球最近的恒星,是太阳系的中心天体。2、太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。3、太阳的特点:“大“。太阳直径大约是13920
(1)人喜欢2023-03-111、方向性:它是生活中、职业中各种事态连续发展演进的一个方向。是指引我们自己内心中去往未来的一个路径。这个方向性基于个体的自我认知、兴趣、特质、能力等方面共同决定的。2、时间性:生涯其实纵贯了人的一生,是一个连续不断的过
(1)人喜欢2023-03-11